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Abstract. The complicated shell form of heteromorph ammonoids can be considered simply as an integration of

ad hoc accretional growth of the aperture, without defining any coordinate system. This ‘growing tube model’

is newly developed herein, using differential geometry, and is applicable to the growth pattern of any coiled shell.

Using the model, any coiled shell with a circular cross-section can be analysed and described by three differential

parameters: E, radius enlarging ratio; C, standardized curvature; and T, standardized torsion. I applied the

growing tube model to eight nostoceratid species of heteromorph ammonoid and analysed growth patterns

and ontogenetic change; stable stages and transitional intervals are clearly recognizable during growth.

Morphologies of real specimens can be produced using computer graphics. A particular advantage of the

model is that perfect similitude is kept at any growth stage because growth patterns are described relative to

whorl radius. This is the most appropriate model for the study of comparative morphology and function of free

tubular shells.

The mode of coiling of heteromorph ammonoids often looks complicated and is commonly used as

a diagnostic character for species and genera. Yet it is difficult to express exactly their various coiling

patterns with current morphological terms. I present here a newly developed method for describing

and analysing three-dimensional coiling patterns, using differential geometry.

The method can be illustrated quite simply by imagining a curved highway with a car moving at

constant speed; this curve can be described using a fixed coordinate system, of course, but there is

another method. The driver of the car must steer right or left to stay on the highway; if the steering

operation is recorded exactly through time, the shape of the highway can be reconstructed by tracing

the path of the car, without recourse to a fixed coordinate system.

Each heteromorph ammonoid whorl approaches a smoothly curved tube of gradually increasing

radius. The ammonoid shell and the living organism responsible for it are comparable with our

highway and the car, the former being just a trace of the latter. It is, therefore, possible to analyse

differentially the shell coiling of various heteromorph ammonoids at any growth stage. This new
method provides an effective approach for the investigation of the particular coiling mechanisms of

heteromorph ammonoids, and of coiling patterns in general.

PREVIOUSWORKON SHELL COILING

Moseley (1838) proposed a geometric model for the coiling of a shell, based on the equiangular spiral (a curve in

which the angle between the radius and tangential line is constant at any point; also called a Bernoulli spiral after

its discoverer). Thompson (1942) reviewed this and other early studies on the coiling of molluscs and
foraminiferans, which all invoked a geometrical approach. Fukutomi (1953) pointed out that the equiangular

spiral equation is not only applicable to gastropods and nautiloids but also to bivalves.

Raup's model. Raup ( 1 966) was able to express the shell form of most gastropods, cephalopods, and bivalves using

just four parameters: W. whorl expansion rate; Z), distance between the coiling axis and generating curve; T,

whorl translation rate; and S, shape of the generating curve. These parameters are defined as simple ratios (see

text-fig. 1). Raup’s model is characterized by a circular generating curve revolving around a fixed coiling axis.

The model can be applied only to a shell form with isometric growth around such a coiling axis. Raup (1967)

applied his model to normally coiled ammonoids and discussed their theoretical morphology. Tanabe et al.
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text-fig. 1. Raup’s (1966) model, expressed by four simple ratio parameters in cylindrical

coordinates.

(1981) later used Raup’s parameters to express the coiling of some heteromorph species, but only some helicoid

and open planispiral forms or growth stages could be accommodated. The coiling of many other heteromorphs

cannot be satisfactorily defined by a fixed coiling axis and such simple parameters.

Tube model. Recently (Okamoto 1984), I proposed a tube model that is applicable to all types of shell coiling.

Because this work appeared in a Japanese journal of limited distribution, the method and results are briefly

summarized here, and the merits and limitation of the model discussed. In this model the cross-section of a coiling

shell is regarded as a circle. Generally, a tubular body with circular cross-section can be expressed by the

following equations (see text-fig. 2):

U = R + r, r R = 0 [inner product],

R is a position vector to the centre of the tube; r, a radius of the tube; U, a position vector to the surface of the tube;

and R, the total differential of R, showing the growing direction of the tube. Using these vectors, I analysed the

text-fig. 2. Tube model, composed of two

elements R and r. R, tube centre line; r,

corresponding tube radius; U,

tube surface vector. Adapted from Okamoto
(1984).
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coiling of the Cretaceous heteromorph ammonoid Nipponites. An approximation to the shape of real specimens

was achieved in four stages (text-fig. 3):

1. The basic meandering U-shaped curve of Nipponites was obtained by the synthesis of two synchronized sine

curves (text-fig. 3a).

2. Although the wave height of the meandering U-shaped curve increased during growth, the wave length,

which also increased, can be regarded as constant against the revolution angle (text-fig. 3b).

text-fig. 3. Construction of the tube centre line for Nipponites. A, approximation of the meandering
U-curve by the synthesis of two sine curves, b, increasing the wave length and amplitude exponentially,

c, cylindrical model in which the amplified meandering U-curve is rolled up around a coiling axis, so as

to show an equiangular spiral in transverse section, d, transformation from the cylindrical model to the

spherical model.

3. The ‘amplified meandering U-shaped curve’ revolves around a coiling axis Z, so that its projection on to the

X Y plane becomes an equiangular spiral (text-fig. 3c).

4. The length of vector R does not increase constantly because of the oscillation of the tube parallel to the

coiling axis. In actual specimens, the increasing ratio of R seems to be nearly constant. Then the X and Y
coordinates are transformed to maintain a constant increasing ratio of R without changing the values of Z and
revolution angle. This procedure geometrically transforms a cylindrical model to a spherical model, as shown in

text-fig. 3d.
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Consequently, the following equations are obtained:

R = ( x,y,z )

x = v /l00“" +ao —z
2

-cosn'n,

y = x /l00" n+Uo —

z

2
• sin n’n,

z = I0 bn+bo
sin dnn, ri = n —/sin 2dnn,

where a and b are the rates of increase of R and meandering amplitude, a 0 and b 0 are their exponentials at the

initial stage, d is the meandering frequency, and/is its intensity index. The radius of whorl cross-section has a

constant growth ratio to the revolution angle as follows:

||r|| = io
cn+c

°.

The eight coefficients used in this tube model describe completely the coiling of Nipponites. Using measured
specimens of N. mirabilis

,
I calculated actual values of these coefficients to analyse its geometry. In order to

test the adequacy of the model, computer graphics were applied to these equations using real values for the

coefficient values; the resulting computer-produced figure matches well with the coiling pattern of the holotype

(text-fig. 4).

text-fig. 4. Comparison between an actual specimen and a tube model of Nipponites. a, sketch of the

holotype of N. mirabilis , UMUTMM7560. B, figure produced by computer from the theoretical

formulae and calculated parameters.

Traditional analyses of shell coiling, using rectangular or polar coordinates, are characterized by the

adoption of fixed axes. How significant is such a fixed coordinate system for organisms with accretionally

growing shells? The coiling axis in Raup’s model may have some biological significance for many gastropods,

planispiral ammonoids, and the like because, during accretionary growth, this axis maintains an invariable

direction relative to the aperture or growing direction of the whorl, and because it is always in the plane of the

generating curve. But no such coiling axis can be defined for heteromorph ammonoids. However complicated the

coiling pattern, of course, it would be possible to simulate it in a fixed coordinate system with a suitable number of

parameters. But it is important to note that any fixed coordinate system is no more than an artificial framework

imposed upon the coiling pattern. For the living organisms, at least, fixed coordinates are irrelevant to the

fundamental mechanism of coiling. Therefore, the Nipponites graphic (text-fig. 4b) is merely a model for

‘pattern matching’, useful for the description of shell form, but no more. In order to recognize the mechanism of

shell coiling, especially in heteromorph ammonoids, it is necessary to abandon the traditional concept of a fixed

coordinate system.
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GROWINGTUBE MODEL
Natural equations of space curves

The shell of every heteromorph ammonoid can be regarded as an elongated conical tube with a

circular cross-section. The tube is defined by two components: 1, the locus of the centre of the whorl

cross-section; and 2, the radius of the tube corresponding to it. For simplicity, consider a curved wire

which represents the centre of the tube. To understand the mode of coiling in this wire model, we can

analyse the differential property of its curvature. At the point ,x(/l) on the space curve, we define a

coordinate system having an origin at x(/L) and an axis along the tangent of the curve at the same point.

This coordinate system is composed of three unit vectors at a given point on the space curve; t, the

tangent; n, the principal normal; and b, the binormal vectors, which all move on the space curve. Thus,

we can describe any smooth space curves without using a fixed coordinate system.

If arc length A is a parameter of the equation of space curve C, then

C : X( A) = (x(A), y(A), z(A))

has direction with the progress of parameter A. Therefore, the three unit vectors t, n, and b, which

intersect each other perpendicularly and form a right-hand system of coordinates, are expressed as

follows (text-fig. 5):

t = t(2) - X(A),

b = b(A) = t(A) x n( A) [outer product].

These unit vectors move on the space curve with the motion of the position vector X(A). Here, the set

(X, t, n, b) is called the ‘Frenet frame’ or ‘moving frame’.

Now the differentials of these equations, which are given by:

X = t, t = ;rn

h = —zot +rb
b = —m

express the changing condition of the unit vectors, and are called ‘Frenet’s equations’, where the

coefficients k and r represent curvature and torsion, respectively.

When the points X(A) and X(A + AA) exist on the space curve, and A0 is the angle between the two
unit tangent vectors, the curvature k(A) is given by:

Ad
k(A) = hm —

.

AA^O AX

text-fig. 5. Frenet frame for a space curve. This

frame, which moves along the space curve, is

composed of three unit vectors: t, tangent; n,

normal; and b. binormal.
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WhenA(p is the angle between the two tangent planes at the above two points, the torsion x(X) is given

by:

r(/l )

2 - lim
AA-> 0

This theorem shows that curvature k and torsion x respectively indicate the revolution rates of the

unit tangent vector and the tangent plane with the change of arc length X.

On the other hand, if the differentiable functions k(X) (> 0) and t(2) are given in the interval I,

there is a definite regular space curve, in which the curvature and torsion are given by k and r with arc

length X, respectively. If we regard the curves, which fit each other by revolution and parallel

dislocation, as identical, there is only one space curve fitting the given condition. Generally speaking,

there are many formulae for expressing a space curve, e.g. z = /(x, y); x = / (f), y = g(t\ z = h(t), and so

on. But these equations show different forms in accordance with the setting of a coordinate system. On
the contrary, k(X) and x{X) with a parameter of arc length have geometrical significance, and define a

unique space curve independent of any coordinate axis. Therefore, k = k(X) and t = r(2) can be

regarded as equations of a space curve. They may be called ‘natural equations of a space curve’.

Standardization of moving frame

The tube model for real coiling has an increasing whorl radius r throughout growth. To describe the

pattern of heteromorph coiling geometry more precisely, it is necessary to consider not only the locus

of the tube centre but also the tube radius. It is, therefore, impossible to use the natural equations of a

space curve directly for a growing tube. In order to establish a method of differential geometric

analysis for a coiling shell, it is necessary to devise some modifications of these parameters X, k, and x.

In a Frenet frame, each coordinate axis is defined as a unit vector t, n, or b. This frame is not suitable

for a coiling tube because it is independent of the tube size. In this case, the unit length of a moving
frame at an arbitrary stage should be defined as a length proportional to the tube radius. Therefore, I

adopt three dimensional vectors rt, rn and rb as a standardized moving frame instead of Frenet’s.

These may be adequate standards to estimate the mode of coiling corresponding to shell size and

growth stage. Use of these vectors enables arc length, curvature, and torsion to be standardized as set

out below.

Growth stage s

In the description of any growth pattern, time might be considered the most appropriate parameter.

Among fossil organisms, however, time scale in the growing process cannot be detected. In the natural

equations of a space curve, curvature k and torsion x are expressed as the functions of arc length X. But

arc length is not always a suitable parameter for expressing the growth of a coiling shell because it is

independent of size. The description of growth should reflect an organism’s size at any time. The
concept of relative growth developed by Huxley (1932) is based upon this principle. If the concept of

relative growth is applied to the tube model, scale can be defined differentially. For the analysis of tube

coiling, I introduce a parameter s that indicates the growth stage of the coiling tube instead of X. In the

time interval from t to t + dt, the increase of the growth stage ds(t) is related to the increase of arc length

dX(t) and tube radius r(t) as follows:

d

Jt
s(f) =

1 d

r(t) dt
X(t)

Radius enlarging ratio E

The radius enlarging ratio is based upon the radii at two growth stages. If a slight advance of growth

stage from s to s + e produces a change in tube radius from r to r + Ar, then the radius enlarging ratio E
is given by:

r + Ar d
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In this definition, £ is a function of s, and prescribes the size of r at the next stage. On the other hand,

the value of r is influenced by change in s, by which the radius enlarging ratio E is defined. Note that E
and s are determined recurrently. This definition is generally more suitable for describing the mode of

growth of a coiling shell.

Standardized curvature and torsion

The helicoid, gastropod-like model tube in text-fig. 6a appears to have a constant mode of coiling

throughout growth, but the curvature k and torsion i calculated along the tube centre are not

constant. Although the figure shows a proportional spiral curve, k and t must decrease with growth.

The three tubes shown in text-fig. 6b D are instructive: b and c show the same curvature of their

centre line but have different radii, while B and d are similar in shape but different in size. Thus d
must have a different value of curvature k from b and c. In the tube model, however, it would be

more convenient for b and d to be the same in their mode of coiling, and different from c. The
curvature and torsion of a tube can be standardized so that the differential parameters are constant

in such proportional growth as shown in text-fig. 6a, and so that text-fig. 6b and d have the same
values. Therefore, I introduce new parameters standardized curvature C and standardized torsion T
instead of k and x. The curvature and torsion of the tube model can be defined as the revolution rate

of the standardized moving frame. Finally, the parameters C and T are given by:

C = rx, T = rx.

By using these parameters, all geometrically similar figures can be expressed as the same coiling

pattern.

Description of a growing tube

In the new tube model, I have now defined three parameters: E, radius enlarging ratio; C,

standardized curvature; and T, standardized torsion. These describe the differential characters of

a coiling tube in general, and are given by the parameter s, indicating growth stage, as follows:

E = E(s), C = C(s), T = T(s )

These three equations describe only the mode of coiling, not its size. For the description of shell size, a

constant r 0 indicating initial tube radius must be introduced. If the three equations and one constant

are given, a unique tube conforming with the conditions is obtained. Finally, the combination of E(s),

C(s), T(s), and r 0 may be regarded as a natural equation of the tube model. To the extent that a tube

grows proportionally, the parameters E, C, and T are constants.

Moving frame analysis for the growing tube model

One of my main purposes here is to establish a method of analysis and description of the regular but

free coiling of heteromorph ammonoids. Text-fig. 7 makes the geometric meaning of the parameters of

the growing tube model more explicit. Given a circular generating curve with centre Qs and radius r s

text-fig. 6. Four hypothetical tubes, a, a proportional spiral, like a gastropod, b and c have the same curvature

of the tube centre line, but a different tube radius, b and d are similar in shape but different in size.
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Differential parameters text-fig. 7. Growing tube model show-
ing the three differential parameters E , C,

and T. In this theory the three parameters

are calculated as a limit value of e = 0.

at growth stage s, at the next growth stage s + e the centre of the circular generating curve shifts to

Qs+e along a line normal to this circle’s plane. This direction indicates the tangential vector of the

standardized moving frame. On the generating curve, there is a special point MGP
S

which signifies the

point of maximum growth at this growth stage. The normal vector of the standardized moving frame

indicates the point MGP
S

from Qs . Then we can define the standardized moving frame (r s t, r s n, r
s

b)

forming a right-hand system at an arbitrary growth stage.

Consequently, the generating curve can be explained as follows: 1, during growth of the tube from s

to s + £, the centre of the generating curve Qs
moves sr

s
in length (6 radians) around the point Os , in the

tangent plane; 2, in the normal plane, the maximum growth point MGP
S

revolves cp radians around Qs ;

3, the radius of the generating curve increases from r
s

to r
s + c

. In this growth model for a generating

curve, the parameters £, C, and T are given by:

In £ = (In r s+£ —In r
s
)/e

C = 0/e

T = <p/e

When the limit value (e = 0) is taken, the three parameters can be defined more accurately. I have

written a computer program SNAKYby which the above growing process can be visualized for

different values of the three differential parameters £, C, and T (see Appendix). Text-figs. 8 and 9

show index figures produced by microcomputer; these diagrams correspond to Raup’s (1966)

representations.

£ represents the ratio of enlargement of tube radius. So in the growing tube model, £ ^ 1 (when

£ = 1, tube radius is invariable). If £ is extremely large, the aperture of the tube rapidly enlarges, like

a limpet or pelecypod valve. If the ratio were smaller than 1, tube radius would decrease.

C represents the degree of tube bending. The theoretical range of this value is 0 ^ C ^ 1. When
C = 0, the shell grows straight, like an orthoconic cephalopod. When C = 1, however, the centre of

revolution in the tangent plane lies at the inner margin of the generating curve. If C > 1, this point

would lie inside the generating curve, a state never found in real coiled shells.

T represents the revolution rate of MGP(maximum growth point) in the generating curve, to which

there is no theoretical limit. Whether coiling is dextral or sinistral is determined by the sign of T, and

if T = 0 the tube is planispiral.

The moving frame in this growing tube model means a coordinate system that is always situated at

the last generating curve, i.e. at the aperture of a coiling shell. In other words, this frame travels along

the centre line of the coiling tube throughout its growth. Therefore, moving frame analysis is a

method, using three parameters £, C, and T, that describes how the frame behaves in space. By
applying this method to actual coiling shells, it is possible to analyse and express not only complex

shell coiling but also any ontogenetic changes in mode of coiling. One of the striking merits of moving
frame analysis in the growing tube model is its ability to determine uniquely the changing pattern of

£(s), C(s), and T(s), corresponding to each growth stage. Traditional methods, using a fixed coordinate
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text-fig. 8. Three-dimensional block diagram showing the spectrum of hypothetical shells, when the

three differential parameters E, C, and T are changed.

system, require extremely variable formulae according to slight differences of the fitting model.

Furthermore, even for one and the same tube model, many equations are possible, dependent on

different definitions of the axis or coordinate system. In the growing tube model, by contrast, any

gently curved tube can be visually expressed by a diagram showing the change of the three parameters

during growth. The more accurate the computer graphics representation becomes, the more closely a

graph of the three parameters must approach a single pattern.
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text-fig. 9. Spectrum of computer-produced hypothetical shell forms with various values of C and T, and a

constant value of E. This corresponds to a horizontal section through the block diagram in text-fig. 8, near the

base.

APPLICATION TO HETEROMORPHAMMONOIDS

Many well-preserved heteromorph ammonoids from the Upper Cretaceous of Hokkaido were

described by Yabe (1904), Matsumoto (1967, 1977), Matsumoto and Kanie (1967), and others. Some
species, especially those belonging to the Nostoceratidae and Diplomoceratidae, show peculiar

three-dimensional coiling patterns; Tanabe et al. (1981) and Okamoto (1984) studied their coiling
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geometry. Here I analyse by moving frame analysis the growth patterns of several characteristic

species of Nostoceratidae and Diplomoceratidae. The repositories of specimens are as follows:

UMUT,University Museum, University of Tokyo; GK, Department of Geology, Kyushu University;

WEA, Institute of Earth Science, Waseda University; and KPMG,Kanagawa Prefectural Museum.
Several methods can be used to estimate values for the parameters £, C, and T from actual

specimens. One is to calculate them directly from specimen measurements. This method is effective for

the estimation of standardized curvature C or radius enlarging ratio £ in certain growth stages, but

these values are difficult to measure continuously throughout growth: moreover, it is almost

impossible to estimate the standardized torsion T by this method because the maximum growth

point MGPis not evident on the shell surface. Alternatively, we can employ the tube model to model a

specimen using a fixed coordinate system to obtain the equations of the centre line of the tube and its

radius. The coefficients in the equations can then be determined from measurements of actual

specimens. When the equations of the tube model and their coefficients are known, it is possible to

calculate the three differential parameters £, C, T and corresponding growth stage s. Thirdly, there

is trial and error, using computer graphics after making rough estimates of £, C, and T; by

comparing the result with actual specimens, the pattern of these differential parameters can be

precisely determined.

In practice I employed all three methods until I obtained a satisfactory approximation to the actual

fossils. Some of the results are shown in text-figs. 10 and 1 1, together with graphs of £, C, and T. The
following specimens were used for the comparisons:

Eubostrychoceras japonicum (Yabe, 1904). KPMG6373, text-fig. 11 b; PI. 7, fig. 9.

£. muramotoi Matsumoto, 1967. WEA003T-1, text-fig. 10c; PI. 7, figs. 3 and 4.

Nipponites mirabilis Yabe, 1904. UMUTMM17738, text-fig. 11d; PI. 7, fig. 10.

Muramotoceras yezoense Matsumoto, 1977. WEA001Y, text-fig. 10b; PI. 7, fig. 2.

Hyphantoceras orientate (Yabe, 1904). WEA002K, UMUTMM17741, text-fig. 11a; PI. 7, figs. 7

and 8.

Ainoceras kamuy Matsumoto and Kanie, 1967. GK H5575, text-fig. 10d; PI. 7, fig. 5.

Scalarites scalaris (Yabe, 1904). UMUTMM17739, 17740, text-fig. 10a; PI. 7, fig. 1.

Polyptychoceras sp. KPMG6374, text-fig. 11c; PI. 7, fig. 6.

The computer-produced figures represent well the fundamental coiling properties of real specimens

(text-figs. 10 and 1 1).

DISCUSSION

Ontogenetic change

The shell growth of heteromorph ammonoids often consists of a few stable stages divided by abrupt

changes of coiling pattern. For example, M. yezoense and £. muramotoi show a transitional interval

between two stable stages (early orthoconic stage and helicoid stage; text-fig. 10b, c). In each stable

stage, the three differential parameters maintain nearly constant values, but in the transitional

interval standardized curvature C and torsion T change abruptly. A. kamuy shows essentially the

same coiling pattern (text-fig. 10d) in its early-middle growth, but then goes through a short

transitional interval and finally forms a retroversal hook, which also has comparatively stable

differential parameters. In N. mirabilis (text-fig. 1 Id), two stages are clearly discriminated. Early on,

the whorl forms a loose open helix with constant differential parameters; later, however, the whorl

meanders intensely around the earlier helicoid. C and T oscillate regularly during this meandering,

but the stage should still be regarded as stable because the variation is regular.

Changes of coiling pattern during ontogeny can be understood clearly using moving frame analysis.

Rapid change of C indicates rapid change of the whorl’s direction of growth. Provided the ventral

margin of the organism roughly coincides with the whorl maximum growth point (MGP), a rapid

change of T suggests a rapid twist of the ventral side of the living chamber. In a transitional interval
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B

text-fig. 10. Diagrams showing the results of a moving frame analysis of some actual specimens. Right-hand

figures are computer-produced profiles corresponding to the diagrams, a, Scalarites scalaris, UMUTMM17739,

17740. B, Muramotoceras yezoense, WEA001 Y. c, Eubostrychoceras muramotoi , WEA003T-1. D, Ainoceras

kamuy, GKH5575.

between stable growth stages, C and T often change simultaneously. Such abrupt changes of coiling

mode between stable stages suggest changes in mode of life.

Interspecific comparison

In early growth, many heteromorph species possess a nearly orthoconic shell, with very small values

of C and T. After the first transitional interval, shell forms become variously diversified. Similar
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text-fig. 1 1. Diagrams showing the results of a moving frame analysis of some actual specimens. Right-hand

figures are computer-produced profiles corresponding to the diagrams, a, Hyphantoceras orientale
, WEA002K,

UMUTMM17741. b, Eubostrychoceras japonicum, KPMG6373. c, Polyptychoceras sp., KPMG6374. d,

Nipponites mirabilis, UMUTMM17738.

coiling patterns may occur in different lineages. For example, a similar change of coiling pattern is

found in M. yezoense, E. muramotoi, and A. kamuy. These ammonoids have orthoconic shafts in early

growth; after the quick turn up, a helical whorl forms and coils around the earlier orthocone. N.

mirabilis and Madatjasearites ryu have a similar meandering coiling pattern in their middle growth

stage (Matsumoto and Muramoto 1967), yet the former belongs to Nostoceratinae and the latter to
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Hyphantoceratinae (Matsumoto 1967); this morphological convergence suggests a similar mode of

life.

On the other hand, some heteromorph ammonoids show quite different coiling patterns in spite of a

close phylogenetic relationship. For instance, N. mirabilis and E. japonicum share similar surface

ornamentation and loose helical coiling in early growth. Matsumoto (1977) suggested that Nipponites

was derived from Eubostrychoceras. During their middle growth stages, however, the two species are

quite different in coiling pattern, and no transitional form has been found. Also, in the differential

parameters, a transition between the two species is difficult to envisage; some saltation of coiling

geometry must have occurred, if this phylogenetic relationship is true.

Elypothetical shell coiling

Analysis using these differential parameters appears to elucidate the mechanism of shell coiling.

Nostoceratid and diplomoceratid ammonoids show considerable intraspecific variation and coiling

diversity. If the three parameters were freely variable, a tremendous range of shell form would result.

An analysis of the coiling of actual specimens, however, shows that changes in these parameters are

closely related to one another and, consequently, produce well-regulated shell forms. For example, I

have successfully reconstructed the trombone-like profile of Polyptychoceras sp. mainly using a trial

and error method of computer graphics (text-fig. 11c), and values 10 °/
0 larger or smaller than the best

fit values of C and T produce biologically impossible shell shapes (text-fig. 12). This result strongly

suggests that some regulatory mechanism affects the pattern of shell growth, so as to produce

‘well-proportioned’ coiling, which occupies only a very narrow band within the imaginable spectrum;

this probably has high adaptability to the environment.

CONCLUSIONS

The shells of many invertebrates are formed by accretionary growth. Therefore, if growth at the

aperture is exactly described, shell form can be determined absolutely. The growing tube model was

derived from such a recognition, and is applicable to any pattern of shell coiling as a first

approximation. One of the most practical merits of the model is that perfect similitude is kept at any

growth stage because growth patterns are described relative to tube radius. This model is probably the

most appropriate one available for the recognition of the actual growing process of tubular shells.

Moving frame analysis enables the highly allometric and complicated coiling patterns of tubular

EXPLANATION OF PLATE 7

Fig. 1. Scalarites scalaris (Yabe). UMUTMM17739, Middle Yezo Group, Turonian; Tappu area, central

Hokkaido. Lateral view, x 1-5.

Fig. 2. Muramotoceras yezoense Matsumoto. WEA001 Y, Middle Yezo Group, Turonian; Oyubari area, central

Hokkaido. Upper view, x 1.

Figs. 3 and 4. Eubostrychoceras muramotoi Matsumoto. WEA003T-1, Upper Yezo Group, Coniacian; Tappu
area, central Hokkaido. 3, lateral and 4, apical views, x 1-5.

Fig. 5. Ainoceras kamuy Matsumoto and Kanie. GKH5575, Upper Yezo Group, Campanian; Saku area, north

Hokkaido. Lateral view of retroversal hook, x 1.

Fig. 6. Polyptychoceras sp. KPMG6374, Upper Yezo Group, Santanian-Campanian; Saku area, north

Hokkaido. Lateral view, x 0-67.

Figs. 7 and 8. Hyphantoceras orientate (Yabe). Upper Yezo Group, Santonian; Kotambetsu area, central

Hokkaido. 7, UMUTMM17742,lateral view of middle helicoid stage, x 1. 8, WEA002K, lateral view of early

stage, x 1-5.

Fig. 9. Eubostrychoceras japonicum (Y abe). KPMG6373, Middle Yezo Group, Turonian; Kiritachi area, central

Hokkaido. Ventral view of early stage, x 1.

Fig. 10. Nipponites mirabilis Yabe. UMUTMM17738, Middle Yezo Group, Turonian; Oyubari area, central

Hokkaido. Lateral view, x 1.
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text-fig. 12. Two hypothetical but unlikely shell forms of Polyptychoceras sp. a, differential parameters C
and T 10% larger than actual values of text-fig. 11c. b, 10% smaller.

shells to be described, analysed, and compared. If ontogenetic similarity indicates close phylogenetic

relationship, moving frame analysis may be useful for the classification of heteromorph ammonoids
and the reconstruction of evolutionary lineages.

The growing tube model has other possible applications. If the growth of a whorl is successfully

reproduced, the volume or capacity of the shell, its surface area, centre of gravity (or buoyancy), and
many other physical quantities can be easily computed by integrating the differential parameters.

Trueman (1941) made some qualitative inferences about the living position of some heteromorph
ammonoids by considering the relationship of centre of gravity to centre of buoyancy. Klinger (1981)

discussed qualitatively the mode of life of some heteromorph ammonoids from the standpoint of

possible buoyancy control. By combining his concept of life orientation with the growing tube model,

any changes in life position during ontogeny can be predicted for various heteromorph ammonoids
(Okamoto, in press).
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APPENDIX

The SNAKYprogram was written in N-88 BASIC for a 16-bit personal computer NEC PC-9801 series,

interfaced with PC-8853n CRT and PC-PR101F (for hard copy production). The abridged version for

Palaeontology does not provide some supplementary functions (e.g. elimination of back lines and calculation of

physical quantities), and requires the input of sequential data for parameters E, C, T, and s before running.

1 ‘ *************************************************************
2 ' + label : SNAKY. abg *

3 '+ programmed by T. Okamoto 1985/2/12 *

4 '* abridged version for 'Palaeontology' 1987/5/24 *

5 '+**********+*+**********+************************************
6 CONSOLE0,25,0,0: SCREEN 3: CLS 3

1000 •************+******+**+******+**+* Data Input ******* 1000
1010 INPUT "Label of data "

; LBL$
1020 OPEN "2 : "+LBL$ FOR INPUT AS #1
1030 INPUT #1 ,COMENT$,NUM
1040 DIM S(NUM) ,E(NUM) ,C(NUM) ,T(NUM)
1050 FOR 1=1 TO NUM
1060 INPUT #1 ,DAM,S( I ) ,E( I ) ,C( 1 ) ,T( I

)

1070 NEXT I: CLOSE #1
1080 X0=300 : YO=200 : XS= 5: YS= 5: PI=3. 14159
1090 INPUT "VIEW ANGLE [p . q , r

]
" ; PI , Q1 , R1

2000 •*******************+**++*********+ First Setting **** 2000
2010 IF P1=0 AND Q1 =0 THEN COC=l : SIC=0: GOTO 2040
2020 COC=Ql /SQR(P1 ' 2 + Q1

'
2 )

2030 SIC=P1/SQR(P1'2+Q1'2)
2040 COD=SQR( PI ' 2 + Q1 ‘ 2 ) /SQR ( PI '2+Q1 ~2+R

1
'2

)

2050 SID=R1/SQR(P1*2+Q1'2+R1'2)
2060 • [ coordinates ]

2070 P0=40: Q0=0 : R0=0: GOSUB+ANGLE ' X-axis
2080 LINE (XO-XS*S,YO+YS*U)- (XO+XS+S ,YO-YS*U) ,

1

2090 P0 = 0 : Q0= 40 : R0= 0: GOSUB *ANGLE ' Y-axis
2100 LINE ( XO-XS+S ,YO+YS*U)-( XO+XS+S, YO-YS+U) ,

1

2110 P0=0 : Q0=0 : R0=40: GOSUB *ANGLE ’ Z-axis
2120 LINE (XO-XS+S, YO+YS*U )-( XO+XS+S, YO-YS+U) ,

1

2130 ' [ starting condition ]

2140 X=0 : Y=0 : Z=0
2150 P=0 : Q=0 : R=

1

2160 RA= 2

2170 MGX= RA : MGY= 0 : MGZ= 0

3010 FOR 1=1 TO NUM-

1

3020 IF IOl THEN GOSUB +MOVEMENT
3030 ' [ view
3040 P0=P : Q0= Q : R0=R
3050 GOSUB +ANGLE
3060 PP=S : QQ=T: RR=U
3070 P0=X : Q0=Y: R0=Z
3080 GOSUB+ANGLE
3090 XX=S : YY=T : ZZ=U
3100 P0=MGX: P0=MGY: R0=MGZ
3110 GOSUB +ANGLE
3120 MGX1=S: MGY1 =T : MGZ1=U
3130 GOSUB *GRAPHI CS
3140 NEXT I : END
4000 +MOVEMENT 4000
4010 EPS I LON= S ( I + 1

) -S ( I

)

4020 RA=RA*E( I

)
'EPSILON

4030 CUR= C ( I > *EPS I LON
4040 TOR= T ( I ) *EPS 1 LON
4050 ' t next condi tion ]

4060 GOSUB+ROTATI ONI ' maximum growth point
4070 FX4=RA: FY4=0 : FZ4=0
4080 GOSUB +ROTATI ON2
4090 FZ5=FZ5+RA*EPSI LON
4100 GOSUB +ROTATION3
4110 GOSUB +ROTATI ON4
4120 MGX=FX8: MGY=FY8: MGZ=FZ8
4130 FX4=0 : FY4=0: FZ4=0 ' centre of tube
4140 GOSUB * ROTAT I ON2
4150 FZ5=FZ5+RA*EPS I LON
4160 GOSUB +ROTATI ON3
4170 GOSUB +ROTATION4
4180 X=FX8 : Y=FY8 : Z=FZ8
4190 FX4=0 : FY4=0: FZ4=1 ' growth direction
4200 GOSUB +ROTATI ON2
4210 GOSUB+ROTATI ON3
4220 P=FX7 : Q=FY7 : R=FZ7
4230 RETURN

growth direction
radius
maximum growth point
Growing Process ** 3000

angle ]

growth direction

centre of tube

maximum growth point

4240
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4510
4520
4530
4540
4550
4560
4570
4580
4590
4610
4620
4630
4640
4650
4660
4670
4680
4690
4710
4720
4730
4740
4750
5000
5010
5020
5030
5040
6000
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6160

6160

[ revolutionary subroutines ]

ROTATION1 ' *** R1 ***
' F: (1)
FX1=MGX-X
FY1 =MGY-

Y

FZ1 =MGZ-Z
’ F: (2)
IF P' 2 + Q'2 = 0 THEN C01=l ELSE COl =P/ SQR(

P'2
+ Q' 2

)

IF P'2+Q'2=0 THEN SI1 = 0 ELSE SI 1 =Q/SQR( P'2+Q'2

)

C02=R/SQR(P'2+Q'2+R'2

)

SI 2=SQR( P'2+Q'2 ) /SQR (P'2 +Q'2 +R' 2

)

FX2 = FX1 *C01 +C02+FY 1 * S I 1 +C02-FZ1+S I 2

FY2=-FX1*SI 1+FY1+C01
FZ2=FX1 *C01 +SI2+FY1+SI 1 *S I 2 + FZ1 *C02

1 F: (3)
C03=C0S(TOR)
SI 3 = SIN(TOR)
FX3 = FX2+C03-FY2*S I 3

FY3=FX2*SI 3+FY2+C03
FZ3=FZ2

’ F: (4 )

IF FX3'2+FY3'2=0 THEN C04=l ELSE C04=FX3/SQR( FX3'2+FY3'2

>

IF FX3'2+FY3'2=0 THEN SI4=0 ELSE SI 4=FY3/SQR ( FX3 '2 +FY3 '2

)

FX4=FX3*C04+FY3*S I 4

FY4=-FX3*SI 4+FY3+C04
FZ4=FZ3 : RETURN

ROTAT I ON2 * *** R2 ***
’ F: (5)
GR1=RA*(EPSI LON+ CUR)
GR2=RA*( EPSILON-CUR)
C05=2*RA/SQR( (GR1-GR2 )'2+(2*RA>'2)
S I 5= (GR1 -GR2 ) /SQR( (GR1 -GR2

)
' 2 + ( 2 *RA

)
'2 )

FX5=FX4*C05-FZ4*SI

5

FY5=FY4
FZ5=FX4*SI 5+FZ4+C05 : RETURN
+ROTATI ON3 1 *** R3 ***

' F:(6) rev. of F( 4) • • • •

FX6 = FX5+C04-FY5*S I 4

FY6=FX5*SI 4+FY5+C04
FZ6 = FZ5

FX7 = FX6*C01 +C02-FY6 + S1 1 + FZ6+C01 *S I 2

FY7=FX6*SI 1+C02+FY6*C01+FZ6*SI 1 *S 1

2

FZ7=-FX6*SI 2+FZ6+C02 : RETURN
ROTATION4

Of F( 2 )

• *** R 4 ***
of F( !)••••

FX8 = FX7 + X
FY8=FY7+Y
FZ8=FZ7+Z : RETURN

ANGLE ' 5000
S=PO*COC-QO*SI

C

T=P0*S I C*COD+QO*COC*COD+RO*SI

D

U=-P0*SIC*SI D-QO+COC+SI D+RO+COD
RETURN

GRAPHICS ' 6000
IF PP' 2 + QQ' 2=0 THEN COA=l ELSE COA=PP/SQR(PP'2+QQ'2

)

IF PP' 2 + QQ' 2 = 0 THEN SIA = 0 ELSE SI A = QQ/SQR(PP'2 + QQ'2

)

COB=RR/SQR(PP'2+QQ'2+RR'2

)

S I B=SQR( PP'2+QQ' 2 ) /SQR ( PP'2+QQ' 2+RR'2

)

FOR J=0 TO 360 STEP 9
X2=X1 : Y2=Y1 : Z2=Z1
XO=RA*COS(J+PI/180)
Y0=RA*SIN( J+PI/180)
Z0 = 0
XI =XO*COA*COB-YO*SI A+ZO+COA+SI

B

Y 1 =X0*S I A+COB+YO+COA+ZO+SI A*S I

B

Z1 =-X0*S I B+ZO+COB
IF J = 0 THEN 6160
LINE (X0+XS*(X1+XX) , Y0-YS*(Z1+ZZ) )-

( XO+XS+( X2 + XX ) , YO-YS*(Z2+ZZ) ) .6

NEXT J : RETURN


